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Basic Science & Facts



wmee ' It's warming.
Y 2 |t'sus.

3 We're sure.

s |t's bad.

s We can fixit.

(Thanks to );


http://350.org



https://en.wikipedia.org/wiki/Greenhouse_gas

Atmosphere
and Sunlight

¥y

ffy:

https://uwpcc.ocean.washington.edu/

How does the greenhouse effect work?

N, (78% of atmosphere)
0, (21% of atmosphere)
Ar (0.9% of atmosphere)
H,O (variable, 0-1%)
CO, (0.04% of atmosphere)
CH, (0.00018% of atmosphere)

Which do you think are greenhouse gases?
What is the difference between greenhouse and
non-greenhouse gases?

ELECTROMAGNETIC SPECTRUM

SOLAR SPECTRUM

X-RAY  ULTRAVIOLET INFRARED SATELLITE WIRELESS

400nm 700nm



https://uwpcc.ocean.washington.edu/
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https://www.geoexpro.com/articles/2020
[08/recent-advances-in-climate-change-
research-part-viii-how-carbon-dioxide-a
bsorbs-earth-s-ir-radiation



https://www.geoexpro.com/articles/2020/08/recent-advances-in-climate-change-research-part-viii-how-carbon-dioxide-absorbs-earth-s-ir-radiation
https://www.geoexpro.com/articles/2020/08/recent-advances-in-climate-change-research-part-viii-how-carbon-dioxide-absorbs-earth-s-ir-radiation
https://www.geoexpro.com/articles/2020/08/recent-advances-in-climate-change-research-part-viii-how-carbon-dioxide-absorbs-earth-s-ir-radiation
https://www.geoexpro.com/articles/2020/08/recent-advances-in-climate-change-research-part-viii-how-carbon-dioxide-absorbs-earth-s-ir-radiation

002 details

https://www.geoexpro.com/articles/2020
[08/recent-advances-in-climate-change-
research-part-viii-how-carbon-dioxide-a
bsorbs-earth-s-ir-radiation

Resting or ground state

‘You

Asymmetric stretch mode

Bending mode

Symmetric stretch mode


https://www.geoexpro.com/articles/2020/08/recent-advances-in-climate-change-research-part-viii-how-carbon-dioxide-absorbs-earth-s-ir-radiation
https://www.geoexpro.com/articles/2020/08/recent-advances-in-climate-change-research-part-viii-how-carbon-dioxide-absorbs-earth-s-ir-radiation
https://www.geoexpro.com/articles/2020/08/recent-advances-in-climate-change-research-part-viii-how-carbon-dioxide-absorbs-earth-s-ir-radiation
https://www.geoexpro.com/articles/2020/08/recent-advances-in-climate-change-research-part-viii-how-carbon-dioxide-absorbs-earth-s-ir-radiation

ties and Space Administration

PRy -
eartn's energy buadget
= The Earth's energy budget describes the
various kinds and amounts of energy that

enter and leave the Earth system. It includes

reflected by » both radiative components (light and heat),
clouds & reflected by total outgoing that can be measured by CERES, and other
) ; atmosphere surface infrared radiation components like conduction, convection,
incoming 77.0 22.9 239.9 and evaporation which also transport heat
solar radiation from Earth’s surface, On average, and over
340.4 the long term, there is a balance at the top

of the atmosphere. The amount of energy
coming in (from the sun) is the same as the
amount going out (from reflection of sunlight
and from emission of infrared radiation).

total reflected e—— atmospheric

solar radiation ) window
99.9 emitted by ——e 40.1 latent heat
atmosphere (change of state)
169.9
emitted by
absorbed by coucs
atmosphere ;
358.2 greenhouse gases

' absorbed by emitted by back
surface surface radiation
163.3 398.2 340.3

net absorbed

All values are fluxes in Wnr?
and are average values based on ten years of data



Radiative
Forcing

Business As Usual (BAU)

— Emissions
(tonnes'year)
Concentrations

(ppm)
(Watts’'m?3
— Temperature (°C)

=+ relative to predndustrial

et

Time

http://www.darkoptimism.org/2008/09/0
3/climate-science-translation-quide/



http://www.darkoptimism.org/2008/09/03/climate-science-translation-guide/
http://www.darkoptimism.org/2008/09/03/climate-science-translation-guide/

Radiative
Forcing

Emissions reductions

~— Emissions
(tonnes'year)
Concentrations
% (Ppm)
5 Radiative forcing
(Watts'm 3
— Temperature (“C)

=+ relative to pre<ndustrial

Time

http://www.darkoptimism.org/2008/09/0
3/climate-science-translation-quide/



http://www.darkoptimism.org/2008/09/03/climate-science-translation-guide/
http://www.darkoptimism.org/2008/09/03/climate-science-translation-guide/

Radiative
Forcing

http://www.darkoptimism.org/2008/09/0
3/climate-science-translation-quide/

-+ relative to pre<ndustrial

Carbon drawdown

— Emissions
(tonnes'year)
Concentrations
(ppm)

Radiative forcing
(Watts’'m3
— Temperature (°C)

Time



http://www.darkoptimism.org/2008/09/03/climate-science-translation-guide/
http://www.darkoptimism.org/2008/09/03/climate-science-translation-guide/
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Urgent need to act with all
speed and at scale.
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https://ourworldindata.org/

1 Our World
GDP per capita

GDP per capita adjusted for price changes over time (inflation) and price differences between countries — it is
measured in international-$ in 2011 prices.

$50,000
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France
South Korea
$30,000
$20,000
$10,000 / : Indonesia
India
Nigeria
00— =
1900 1920 1940 1960 1980 2000 2016
Source: Maddison Project Database (2018) OurWorldInData.org/economic-growth « CC BY

Note: These series are adjusted for price differences between countries based on only a single benchmark year, in 2011. This makes them
suitable for studying the growth of incomes over time but not for comparing income levels between countries.


https://ourworldindata.org/

CO, emissions per capita vs GDP per capita, 2016

Carbon dioxide (CO,) emissions per capita are measured in tonnes per person per year. Gross domestic product
n O u n a e (GDP) per capita is measured in international-$ in 2011 prices to adjust for price differences between countries and
adjust for inflation.
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Source: Global Carbon Project; Maddison (2017) OurWorldInData.org/co2-and-other-greenhouse-gas-emissions/ « CC BY

https://ourworldindata.org/



https://ourworldindata.org/

Annual CO, emissions, 2017

Annual carbon dioxide (CO,) emissions, measured in tonnes per year.
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Source: Global Carbon Project; Carbon Dioxide Information Analysis Centre (CDIAC)
OurWorldInData.org/co2-and-other-greenhouse-gas-emissions/ « CC BY

https://ourworldindata.org/



https://ourworldindata.org/

CO, emissions per capita, 2017

Average carbon dioxide (CO,) emissions per capita measured in tonnes per year.
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Source: OWID based on CDIAC; Global Carbon Project; Gapminder & UN
OurWorldinData.org/co2-and-other-greenhouse-gas-emissions/ « CC BY

https://ourworldindata.org/



https://ourworldindata.org/

Global Carbon
Budget
(Cumulative
Emissions

1850- 2016)

USA and EU have

disproportionately emitted CO,

Most citizens in the Global
South, still live a
pre-industrialized lifestyle.

https://ourworldindata.org/

Who has contributed most to global CO_ emissions?

Cumulative carbon dioxide (CO-) emissions over the period from 1751 to 2017.
which measure CO- produced dome Aly from fossil fuel combustion and
(i.e. consumption-based). Emissions from international travel are not included.

North America

457 billion tonnes CO,

29% global cumulative emissions
USA

399 billion tonnes CO,
25% global cumulative emissions

Figures are based on production-based emissions
ent, and do not correct for emissions embedded in trade

Asia
457 billion tonnes CO,
29% global cumulative emissions

Canadal China Japan
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12.7% global cumulative emissions |*7°
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43 billion tonnes CO,
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https://ourworldindata.org/

UNFCCC

Article 3

Signed by all UN parties
in 1992

1. The Parties should protect the climate system for the
benefit of present and future generations of humankind,
on the basis of equity and in accordance with their
common but differentiated responsibilities and
respective capabilities. Accordingly, the developed
country Parties should take the lead in combating
climate change and the adverse effects thereof.

2. The specific needs and special circumstances of
developing country Parties, especially those that are
particularly vulnerable to the adverse effects of climate
change, and of those Parties, especially developing
country Parties, that would have to bear a
disproportionate or abnormal burden under the
Convention, should be given full consideration


https://unfccc.int/resource/docs/convkp/conveng.pdf

Ferrari

e 3 friends buy a Ferrari.

e 2 rich friends take it for
a ride and wreck it.

e And then ask the poor
friend to pay to fix it.




Impacts and risks for selected natural, managed and human systems
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Warm-water Mangroves Small-scale  Arctic Terrestrial ~ Coastal Fluvial Crop Tourism  Heat-related
corals low-latitude  region  ecosystems flooding flooding yields morbidity
fisheries and mortality

Confidence level for transition: L=Low, M=Medium, H=High and VH=Very high

Purple = Very high risks of severe impact and significant irreversible persistent climate related hazards.
Red = Servere widespread impacts.
Yellow = Impact detectable and attributable to climate change.

Credit : https://www.ipcc.ch/sr15/



https://www.ipcc.ch/sr15/

At 2.0°C, 10 million will be displaced
due to sea level rise vs 1.5°C.

100s of millions will be forced into
extreme poverty.

Risks are unevenly distributed and are generally
greater for disadvantaged people and
communities in countries at all levels of
development.

: Credit:
ipcc @@ -


http://go/ipccreport
https://www.ipcc.ch/report/ar5/syr/



http://go/ipccreport

Droughts increase in frequency
and magnitude at 2.0°C

IpCC & ® 7 1POG1.5°C Chapter3 Credit:


https://www.ipcc.ch/sr15/chapter/chapter-3/
http://go/ipccreport

S S : R WL By
ﬁTurtle swims over bleach . Heron Island, Great Barrier Reef



http://go/ipccreport

Ocean acidification will finish corals
before we even reach 2.0°C.

At 2.0°C, the survival of a broad range of
other fish and marine groups is at risk.

[pCC@® 1RCC1.5°C Ehapters Credit:


https://www.ipcc.ch/sr15/chapter/chapter-3/
http://go/ipccreport
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http://go/ipccreport

At 2.0°C we risk crossing environmental
tipping points, including ice shelf collapse
and runaway warming feedback loops.

If these points are crossed, cutting emissions
will be too little, too late.

ipcc@®



Credit: go/ipccreport



http://go/ipccreport

Credit: go/ipccreport



http://go/ipccreport

Wildfires are a new normal at 2.0°C.

Credit:

|DCC w” & A.1, IPCC 1.5C Summary for Policymakers


https://www.ipcc.ch/sr15/chapter/summary-for-policy-makers/
http://go/ipccreport

All of these effects compound.
Increased vulnerabilities to

energy, food, and water at 2.0°C

will overlap temporally and spatially,
creating cascade failure risks.


https://www.ipcc.ch/sr15/chapter/chapter-3/
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Global greenhouse gas emissions by economic sectors, 2010

Electricity
and Heat Production Energy
25% 1.4%
AFOLU
24%
Industry
Buildings 1%
6.4%
— Transport
Transport 49 Gt COzeq 0.3%
14% (2010)
Industry
21% R — ?;j/ldings
0
Other
Energy
9.6% AFOLU
0.87%

Direct Emissions

Indirect CO, Emissions

Climate Change 2014: Mitigation of Climate Change, IPCC Working Group IlI



https://www.ipcc.ch/report/ar5/syr/

Three Pillars

All three are equally important.

Not always, but usually policy
precedes finance, and finance
precedes technology.

POLICY FINANCE TECHNOLOGY

Necessity is the mother of invention




TECHNOLOGY!

Complete Decarbonization of
every sector is URGENT

There is STRONG
BUSINESS case for
investing in climate solutions

ngp

THEMOST COMPREHENSIVE
PLAN EVER PROPOSED T0

REVERSE GLOBAL WARMING
EAITED BY PAUL HAWKEN

0

e Deploy existing technology Rapidly.

e Fund Research for tomorrow’s needs (example:
sequestration, energy storage)

e Make the transformation of society Equitable



The science is clear - we need complete decarbonization.
|

India is still developing, vast majority of citizens are still getting out

Complete of the poverty trap.
Decarbonization »

India’s double
burden

India needs to be a model of doing both at the same time -
Achieve development while reducing carbon impact.
No other country has done this before




— e Disproportionate consumption of resources
“Westem” needs to be reduced by the rich countries.
Lifestyle e Rich countries need to help poor countries
LEAPFROG carbon based backbone.
o No electricity to solar and wind.
o No carsto EVs.
o Plant based “meats” diet.

e |f Poor countries adopt a traditional “western
lifestyle” we have no hope!




Google’s Climate Strategy

121840
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http://www.youtube.com/watch?v=sNPas3AYtqw

G

Carbon neutral since 2007.
Carbon free by 2030.

Carbon free electricity by 2030.
Single-use-plastic free* by 2030.
All electric kitchen by 2030.

Cut food waste in half for each Googler by 2025.
Send zero food waste to landfill by 2025.
Replenish 120% of the water we consume by 2030.
Net-zero across all operations and value chains by 2030.

*ONLY for own operations & food program GOOGLE'S APPROACH




Our ambitious 10-year strategy for carbon goes far
beyond our own operations.

LEADING AT GOOGLE SUPPORTING PARTNERS ENABLING EVERYONE

Go beyond carbon Empower partners (nonprofits, Through our products (core
neutrality for our operations. researchers, policymakers, etc.) products, consumer hardware),
with the tech they need to scale we offer helpful ways for everyone
up carbon solutions. to be part of the solution.

GOOGLE’S APPROACH




LEADING AT GOOGLE

GOOGLE’S APPROACH

S LT 5

DATA CARBON-FREE SUSTAINABLE DEVICES
CENTERS ENERGY WORKPLACES & SERVICES

m—

LEADING AT GOOGLE



EVOLUTION OF ENERGY SUSTAINABILITY

000

@ 000(7
(o]
B /
‘ -~
WHAT IS CARBON NEUTRAL? WHAT IS CARBON FREE?

)
The carbon we emit through ‘* On an hourly basis, in every

operations is offset with location, we'll run on carbon
renewable energy purchases free energy (CFE) sources.
and carbon credits. - h -

WHAT IS 100% RENEWABLE?

The electricity we use on an
annual and global basis is
matched with renewable
energy purchases.

LEADING AT GOOGLE



GOOGLE’S ENERGY JOURNEY

CARBON NEUTRALITY

Offsetting Emissions since 2007 since 2007
Google has purchased in enough high-quality carbon offsets

and renewable energy to bring our net operational emissions

to zero.

Reducing Emissions since 2017
Google has matched its global, annual electricity use with 100% RENEWABLE ENERGY
wind and solar purchases. However, our facilities still rely on since 2017

carbon-based power in some places and times.

Eliminate Emissions by 2030
Google intends to match its operational electricity use with
nearby (on the same regional grid) carbon-free energy
sources in every hour of every year.

24/7 CARBON-FREE ENERGY

by 2030

LEADING AT GOOGLE



SUPPORTING PARTNERS
GOOGLE’S APPROACH

B —
B —

Plargt |
Prc%ss

Google

SUSTAINABILITY IMPACT NEW SCALABLE
BONDS CHALLENGE TECHNOLOGIES

SUPPORTING PARTNERS




ENABLING EVERYONE
GOOGLE’S APPROACH

GOOGLE GOOGLE GOOGLE NEST GOOGLE GOOGLE
HOTELS FLIGHTS MAPS  THERMOSTAT SEARCH SHOPPING

@ ENABLING EVERYONE @
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Remote Sensing

A crash course

121840



Earth Landsat Missions: Imaging the Earth Since 1972

Observation

I Landsat 1 July 1972 - January 1978
I |andsat2 January 1975 - July 1983
been the Workhorse Of I Landsat 3 March 1978 — September 1983

NASA’s Landsat mission has

remote SenS|ng for a|mOSt 50 I Landsat4 July 1982 — December 1993
N Landsats March 1984 —January 2013
yearS- Landsat 6 October 1993
Landsat7 April 1999 —
Landsat 8 February 2013 —
Landsat9 2021

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

https://gisgeography.com/landsat/



https://gisgeography.com/landsat/

Sentinel
(Copernicus)

Sentinel program by ESAis a sentinel-sp
fan favorite, and most likely —
to be part of any remote
sensing researcher’s toolkit.

https://www.esa.int/Applications/Observing_the Earth/Copernicus/
The_Sentinel_missions



https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/The_Sentinel_missions

Orbits

Orbits are destiny for
satellites.

Most EOS satellites are in
sun-synchronous orbit

SUN-SYNCHRONOUS ORBITS

Geosynchronous orbit is / \

useful for real time data
access.

o/

sun-synchronous orbit
(the green line)

https://upload.wikimedia.org/wikipedia/commons/b
[b0/Geosynchronous_orbit.qif
https://study.com/academy/lesson/sun-synchronou
s-orbit-vs-geostationary-orbit.html



https://upload.wikimedia.org/wikipedia/commons/b/b0/Geosynchronous_orbit.gif
https://upload.wikimedia.org/wikipedia/commons/b/b0/Geosynchronous_orbit.gif
https://study.com/academy/lesson/sun-synchronous-orbit-vs-geostationary-orbit.html
https://study.com/academy/lesson/sun-synchronous-orbit-vs-geostationary-orbit.html

Passive Sensors

Types of

P 4
' 4
Sensors .E g

Most satellite sensors are
passive.

Active Sensors

/4
r -~



https://earthdata.nasa.gov/learn/backgrounders/remote-sensing

Spatial
Resolution

https://earthdata.nasa.gov/learn/backgrounders/remote-sensing



https://earthdata.nasa.gov/learn/backgrounders/remote-sensing

Temporal
Resolution

Orbit and acquisition
technique determines revisit,
but a constellation of
identical satellites can
increase revisit frequency.

https://www.intelligence-airbusds.com/imagery/constellation/
https://earthdata.nasa.gov/learn/backgrounders/remote-sensing

Acquisition

Strip Mapping



https://www.intelligence-airbusds.com/imagery/constellation/
https://earthdata.nasa.gov/learn/backgrounders/remote-sensing

2-bit (4 values)

[
4-bit (16 values)

8-bit (up to 256 value

S)


https://earthdata.nasa.gov/learn/backgrounders/remote-sensing

Spectral
Resolution

Width of EM spectrum being
observed per band, and total
range of observation.

https://www.pixxel.space/technology
https://earthdata.nasa.gov/learn/backgrounders/remote-sensing

opacity
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Gamma rays, X-rays and ultraviolet
light blocked by the upper atmosphere.

0.1 nm 1nm 10 nm 100 nm

RGB

Visible light Most of the
IS1 :

infrared spectrum  pagio waves observable.
observable, absorbed by

with sorrr\\e. atmospheric
atmospheric gasses.

distortion.

Long-wavelength
radio waves
blocked.

n 10pym 100 ym

Wavelength

MULTISPECTRAL HYPERSPECTRAL


https://www.pixxel.space/technology
https://earthdata.nasa.gov/learn/backgrounders/remote-sensing

Synthetic
aperture radar

NISAR, first collaboration
between NASA and ISRO, will
be the most expensive earth
observation satellite.

https://nisar.jpl.nasa.gov/
https://www.capellaspace.com/ d)

CapellaSgece e B ) 3 PG 2 e /7 pella Space. All RightsiReserved


https://nisar.jpl.nasa.gov/
https://www.capellaspace.com/

Landslides

——g

L b e =

LIDAR

GEDI is the latest LIDAR
satellite that has been used
in innovative ways.

Field plot

0.07-25 ha

https://www.usgs.gov/media/images/lidar-point-cloud-vs-bare-earth

-dem
https://www.sps-aviation.com/experts-speak/?id=527&h=LiDAR-Sa

tellites



https://www.usgs.gov/media/images/lidar-point-cloud-vs-bare-earth-dem
https://www.usgs.gov/media/images/lidar-point-cloud-vs-bare-earth-dem
https://www.sps-aviation.com/experts-speak/?id=527&h=LiDAR-Satellites
https://www.sps-aviation.com/experts-speak/?id=527&h=LiDAR-Satellites

Vegetation
Indices

NDV!I is the most popular
vegetation index that
measures chlorophyll content
(plant health).

Quite useful for analytical
modeling.

https://gisgeography.com/ndvi-normalized-difference-vegetation-in
dex/

50-0. 4-0.30)
(050-008) . _, (0.4 - 0.30)

=0, =014
(0.50 + 0.08) (0.4 + 0.30)



https://gisgeography.com/ndvi-normalized-difference-vegetation-index/
https://gisgeography.com/ndvi-normalized-difference-vegetation-index/

ML /Al &
Remote
Sensing

Golden age of GIS is here
Cost of new data is falling,
while quality and quantity is
rapidly increasing.

https://www.safegraph.com/blog/moores-law-strikes-the-satellite-in

dustry
https://iremkomurcu.medium.com/deep-learning-in-remote-sensing

-74b3b6233bae

MoorEe s LAwW STRIKES AGAIN!

SATEWTE PERFORMANCE/COST GROWS EXPONENTIALLY

PERFORMANCE/KG
FOR SATEILTES

AMOUNT

TiHE
@AUREN

HT: Peter PLaT2ER ON "WoRLD OF DAAS " PODCAST



https://www.safegraph.com/blog/moores-law-strikes-the-satellite-industry
https://www.safegraph.com/blog/moores-law-strikes-the-satellite-industry
https://iremkomurcu.medium.com/deep-learning-in-remote-sensing-74b3b6233bae
https://iremkomurcu.medium.com/deep-learning-in-remote-sensing-74b3b6233bae

Food & Agriculture

121848



Mitigation

Food & Water
Security (Adaptation)

Air & Water
Pollution

Nature &
Biodiversity

The environmental impacts of food and agriculture

26% of greenhouse gas emissions come from food

Food Non-food
13.7 billion tonnes CO,eq 38.7 billion tonnes CO,eq

Greenhouse gas

emissions
50% of the world’s habitable land is used for agriculture
Land use Agriculture Forests, shrub, urban area, freshwater
51 million km? 51 million km?
70% of global freshwater withdrawals are used for agriculture
Er;ﬁsahwattir Agriculture Industry (19%)
withdrawals 70% of freshwater withdrawals Households (11%)

78% of global ocean and freshwater pollution

Eutrophication Agriculture Other sources
78% of global eutrophication 22%

Wild mammals (6%)

94% of global mammal biomass (excl. humans) is livestock

Mammal T
H H H Ivestoc
lodaiversi
b Od s ty 94% of global mammal biomass (excluding humans)

71% of global bird biomass is poultry livestock

biodi B'.;d Poultry livestock Wild birds
lodiversity 71% of bird biomass 29% of bird biomass

Data sources: Poore & Nemecek (2018); UN FAO; UN AQUASTAT; Bar-On et al. (2018). Licensed under CC-BY by the author Hannah Ritchie.
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Date published: November 2022.




Transportation

Agriculture is a hard to abate sector.
There are no clear solutions that scale.



Al/ML Transformational Applicable in the Global

Category Intervention Potential south ?
Demand Management Increase plant based diets No No
Faux Meats No No

Total U.S. plant-based food market

$7.0B
$4.9B $5.58 +27%

2018 2019 2020

/

4 SPINS Sﬁ, [socdrood




Al/ML Transformational Applicable in the Global

Category Intervention Potential south ?
Supply Management Yield Improvements Yes Yes
Pest & Disease detection Yes Yes

Reduce food waste - improve
supply chain

Yes (Data availability is a

ves challenge)

Reduce food waste - Identify food

) Yes Maybe
spoilage

6% of global greenhouse gas emissions come
from food losses and waste

Emissions from food that is never eaten
accounts for 6% of total emissions

I ]
I 1

Lostin Consumer Food eaten
supply chains waste

Pest Management

Select the following details

Select Village

Select Farmer
Traps
Trap 1
a @
Camera  Gallery

Photo of Trap notyet capture. Click on Capture

Trap2

a =
Camera  Gallery

1 | Photo of Trap not yet captured. Click on Capture

' Food production is responsible for 26% of global greenhouse gas emissions

Note: One-quarter of food emissions comes from food that is never eaten:15% of food emissions from food lost in supply chains; and 9% from consumer waste. -

Data source: Joseph Poore & Thomas Nemecek (2018). Reducing food's environmental impacts through producers and consumers. Science.
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the author Hannah Ritchie.




Category Intervention Al/ML Transformational Applicable in the Global

Potential south ?
. Livestock management - diet
Change Ag Practices o 9 No Maybe
additives / manure management
Non flooded rice production Maybe Yes
Agroforestry / Intercropping Yes Yes
Crop Residue Management Maybe Yes
Agrivoltaics Maybe Maybe
Oceania
S America m Enteric Fermentation
m Stored Manure Plant first crop Plant second Harvecs’t
; crop Harvest  S€con
N America Manure Deposited on Pasture / first crop crop
m Applied Manure
e Synthetic Fertilizer “—_——_‘__‘_‘_‘—‘——__
Asia Crop Residue Decomposition Crop

™ Rice Cultivation
Africa Cultivation of Organic Soils
M Burning Crop Residues & Savanna

World




Category Intervention

Reduce Resource . L
Precision Chemical inputs

Intensity

Hydroponics

Vertical farming
Heat exchanger

Compressor — \H

+ +
Ny Hy —» ﬁA) unrseacted unrseacted
feed gases '1 y N,, H, N,, H,
m i -

l | Hot water out
= I
Catalyst beds |

Feed gases Condenser

prewarmed by

Recycled Ny, H,
Recycled N,, H,

heat of reaction

| Cold water in

Heater

Reactor Refrigerated unit

Al/ML Transformational
Potential

Yes

No

Yes

Fertilizer use per hectare of cropland, 2017

M Nitrogen [l Phosphorous [l Potassium

China

Brazil

United Kingdom

India

Ecuador 22 kg 47 kg

European Union

United States 25kg 30kg EPEEEY]

World LN TN 123 kg

Nigeria 16 kg

Ghana 13 kg

0Okg 50kg  100kg 150 kg

Source: Food and Agriculture Organization of the United Nations

22 kg 25 kg [REANY]

Applicable in the Global
south ?

Maybe

Yes

No

Our World
in Data

390 kg

43 kg

250kg  300kg 350 kg

OurWorldinData.org/fertilizers « CC BY



Al/ML Transformational Applicable in the Global

Category Intervention Potential south ?
Climate Adaptation Irrigation optimization Yes Yes
Rainwater harvesting No Yes
Crop Flood damage assessment Yes Yes
0 2 w0 880 Kilometers w@—m Before After Ground truth Prediction

s

* Damaged 0.96

! Damaged 0.92

= No Damage 0.31

CATEGORIZATION
W Over-explotted
Critcal
[ sem-crtical
Sefe
1 saline
[ Not Assessed Hilly/Forest Areas)

No Damage 0.36




Al/ML Transformational Applicable in the Global

Category Intervention Potential south ?
Soil Hg alth & So'.l Carbon Regenerative Agriculture Yes Yes
equestration
Perennial Grain Crops Maybe Yes

From Perennial Wheatgrass to the
Kernza® Grain

Wheatgrass is Identified Domestication Kernza® Grain



Genetically modified
crops

Crop Method Target gene

Biotic Stress

A. thaliana/ NHEJ dsDNA of virus (A7, B7, and C3

N. benthamiana regions)

A. thaliana NHEJ elF(iso)4E

N. benthamiana NHEJ BeYDV

N. benthamiana NHEJ ORFs and the IR sequence
SDNA of virus

Rice NHEJ OsERF922 (ethylene responsive
factor)

Rice (IR24) NHEJ OsSWEET13

Bread wheat NHEJ TaMLO-A1, TaMLO-BT, and
TaMLOD1

Cucumber NHEJ elF4E (eukaryotic translation
initiation factor 4E)

Abiotic stress

Maize HDR ARGOS8

Tomato NHEJ SIMAPK3

A thaliana NHEJ UGT79B2, UGT7983

A. thaliana HDR MIR169a

A thaliana NHEJ OST2 (OPEN STOMATA 2)
(AHAT)

Rice HDR, NHEJ OsPDS, OsMPK2, OsBADH2

Rice NHEJ OsMPK5

Rice NHEJ, HDR OsMPK2, OsDEP1

Rice NHEJ OsDERF1, OsPMS3,
OSEPSPS, OsMSH1, OsMYBS

Rice NHEJ OsAOX1a,
OsAOX1b,0sAOX1c, OsBEL

Rice NHEJ OsHAK-1

Rice NHEJ OsPRX2

Nutritional and other Traits

Rice NHEJ 25604 gRNA for 12802 genes

Maize NHEJ ZmIPK1A ZmIPK andZmMRP4

Wheat HDR TaviT2

Soybean NHEJ GmPDS11 and GmPDS18

Tomato NHEJ Rin

Potato HDR ALST

Cassava NHEJ MePDS

Genetically modified crops

Beet severe curly top virus resistance

Turnip mosaic virus (TuMV) resistance

Bean yellow dwarf virus (BeYDV) resistance
Tomato yellow leaf curl virus (TYLCV) and Merremia
mosaic virus (MeMV)

Blast Resistance

Bacterial blight disease resistance
Powdery mildew resistance

Cucumber vein yellowing virus (CVYV), Zucchini
yellow mosaic virus (ZYMV), and Papaya ring spot
mosaic virus type-W (PRSV-W)

Increased grain yield under drought stress
Drought tolerance

Susceptibility to cold, salt, and drought stresses
Drought tolerance

Increased stomatal closure in response to abscisic
acid (ABA),

Involved in various abiotic stress tolerance
Various abiotic stress tolerance and disease
resistance

Yield under stress

Drought tolerance

Various abiotic stress tolerance

Low cesium accumulation
Potassium deficiency tolerance

Creating genome wide mutant library
Phytic acid synthesis

Fe content

Carotenoid biosynthesis

Fruit ripening

Herbicide resistance

Carotenoid biosynthesis

Jietal, 2015

Pyott et al., 2016
Baltes et al., 2015
Aliet al., 2015

Wang F. et al.,, 2016

Zhouetal., 2015
Wang et al.,, 2014

Chandrasekaran et al.,
2016

Shietal., 2017
Wang et al., 2017

Zhao et al., 2016
Osakabe et al., 2016

Shan et al., 2013
Xie and Yang, 2013

Shan et al., 2014
Zhang et al., 2014

Xuetal., 2015

Cordones et al., 2017
Mao et al., 2018

Meng et al., 2017
Liang et al., 2014
Connorton et al., 2017
Duetal, 2016

Ito et al., 2015

Butler et al., 2016
Odipio et al., 2017

<
¢}
(2]
<
D
w

Deeper roots to drawdown more carbon
Reflect more sunlight (albedo adjustment)
Adaptation to droughts and floods

Faster growth and increased yields

Disease / pest resistance

Drawing down / reducing emissions of Nitrous
oxide



There are no We need all of Deep need for a

. . underpinning digital
S|.Iver bullets in the above. layer to experiment,
climate change But How to invest ? measure, monitor and

support data driven
decision making.
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Agriculture in India
16% 43%

Agricultureis only  Agriculture
16% of country’s employees 43% of
gross GDP the population

Groundwater is
critically low in 60% of
the districts (counties)

- Chronic low yields

-82% land = 44% value

- Solutions need to be COST
EFFECTIVE and SIMPLE

- Investments, Policy and
Technology are hitting a
transformational inflection

point

Area Value

Sugar &
Plantation

Horticulture

Pulses &
Oilseeds

Cereals

Commodity s

Average yield
(tonnes per hectare, 2017) ~

Most productive country
(tonnes per hectare, 2017) ~

Rice 3.85 9.82 Australia
Buffalo milk 2,004 2,007 |India

Cow milk 1.2 10371 | Israel

Wheat 2.8 8.9 Netherlands
Cotton (Lint + Seeds) 1.6 46 Israel
Mangoes, guavas 6.3 40.6 Cape Verde
Fresh Vegetables 134 76.8 United States
Chicken meat 10.6 20.2 Cyprus
Potatoes 19.9 443 United States
Banana 37.8 59.3 Indonesia
Sugar cane 66 125 Peru

Maize 1.1 55 Nicaragua
Oranges

Tomatoes 19.3 55.9 China

Chick peas 09 28 China

Okra 76 23.9 Israel
Soybeans 11 3.7 Turkey

Hen eggs 0.1074] 04241 | Japan
Cauliflower and Broccoli | 0.1387! 0.424" | Thailand
Onions 16.6 67.3 Ireland




Map  Satellite

g

&  Go back to full map view

Current Capabilities

Overview

Confrdencesdgh

¥ Mustard @& 0.26 Hectare
Current crop type Field Size

@ Field ID: 7JPQ2HF2+8PHX = Last Sowing: 2022-11-05

% Most grown crop: Mustard &3 Last Harvest: 2023-03-05
Future Capabilities
Overview

@ Distance to water : xx km © Distance to road : xx km

@ Distance to Mandi : xx km @ Distance to cold storage : xx km
Agriculture practices Last3years ¥

* This data is based on AUML capability. Actual data may differ/ ve

@ Rice

, 2 Q@SOD O ®®0
& Unknown 2051 0050 O ®® O
& Hide All ; 4 2022 ..O J::<° .. w

Switch View
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

e Crop o Tillage

Sowing .u;mesn ef\cadmg

‘|

Brief - Organize the agricultural information at an individual farm field level





http://go/ak-live

- 2 Narendra Modi &
J @narendramodi

Highlights from a memorable Global Partnership on Artificial Intelligence
Summit, which reaffirms the importance of Al for a better planet.

ndi |atro
agriculture Understa ding Fla
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Engagement model

Govt appointed vendors Government can now
validate and link Google’s target, track and monitor
: , satellite derived field level interventions, and be data
Generate map layers using public insights with farmers. driven in decision making

and private overhead imagery,
that is entirely Pll free






GeoFMs & Types of Earth Observation resolutions

Spatial

-;.;Smallholder farms

(Avg size ~ ‘2 5|Acres)

Spectral

e\ lonsoons Cloudsis
Occlude Rainy season

shorter wavelength longer wavelength
higher i lOWET frequency
higherenergy 7 loweren

“I’I‘I’l’l’l‘l‘(‘\‘|l|"l.”.’”ll\:“,h ”Ul“ \' \“ \j I\)’ \//\M\/\/\

Temporal
Understanding & _ NN
interpreting data “Detecting
across all of these Sub-Seasonal
resolutions is the core \ Events

challenge for GeoFMs

Radiometric
AnthroKrishi pushes

on Spatial, Temporal
and Spectral
simultaneously.




10m
Satellite
Weekly

30cm
Satellite
Annual

StreetView
Every 3 to 6
years

Weather
Continuous

- OO80" O ® O
o O Q@ QN

00 O @& @
.

Apr May Jun Jul Aug Sept Oct Nov Dec

2022

Qo @ s

@ sowi

Event Detection

TIME >

(9L g’
ol - —)

Y 30x Super Resolution Segmentation (Latent Diffusion)
Multi Task (Segmentation & Crop Classification)

Modeling
challenge:
Heterogeneity in
data modalities,
resolution and
frequency

\

Street View + Satellite (+ Weather?)

v @ ranest @) Foosing

Tree Volume
(Carbon stock)
measurement

Classification

Segmentation

Yield Prediction



Key challenge

e Lack of large and public e Collect and clean labeled data

datasets j>
e Understand the domain, and

e Fragmented benchmarks and create internal benchmarks for
metrics iterative improvement

These are common challenges for India and Global South!



Our Solutions

Agricultural Landscape Understanding [ALU]

1. Panoptic Segmentation
High Res Sat Images — Fields, wells, ponds, trees...

API Launched

2. Superresolution for Seamentation
Low Res Sat + High Res Sat Reference — Field boundaries

New latent diffusion based model

Agricultural Monitoring and Event Detection [AMED]

3. Crop Type Classification
ALU + Low Res Sat — Crop Type

API to be launched soon

4. Satellite Super Cross Fusion
Low Res Sat + Street View (during training) — features
for classification & other tasks

Model development ongoing

Data challenges .........

........ Algorithmic challenges >




Agricultural Landscape Understanding




Agricultural Landscape is complex
Digitizing landscape is fundamental to targeting

Farm pond

Orchard / Tree Crop

Tree Buildings
Farm Field
Water
Well
Check Dam

Woodland



Agricultural Landscape Understanding

Panoptic Segmentation Problem

Problem

Delineate boundaries of multiple agricultural classes
from Very High Resolution (VHR) Satellite Images

Given an input satellite image we generate multi-class semantic
segmentation and instance segmentation for each layer

Challenges Layer Classes
L Ground Fields, farm ponds, other water bodies
e |nsufficient labelled datasets
o Unsuitable for smallholder farms Well Dug wells
o No labels for non-field classes Tree Trees, woodlands

Cloud Opaque, transparent cloud




Agricultural Landscape Understanding (ALU)

High Quality Dataset Creation

Input Image Annotation Output

fondy "
Features No. of Samples
Fields 105955
Ponds 456
Other water 1083
Trees 101825
Wells 332

Images

(ti-tn)
S2cell
Map

(a)

Complete ML System

!
L3
oo

(€) Model input

Vectorization,
de-deduplication,
and merging into
single output

Dagger removal

Adding properties

ML
Model

Post
Processing



Agricultural Landscape Understanding (ALU)

e U-Net based convolutional network which
generates per-pixel semantic class and

Input Image

pixel-pair affinities in a single pass at multiple
resolutions for all 4 instance layers

e Cascaded graph partitioning algorithm which
uses these predictions to obtain instance

] 1 et
B LR
B 1 4]

ST --A ground* ﬂ ]

segmentation

Our definition of layers models

height-based distinction of agricultural
features and models physical
constraints and overlap

..........

Encoder

Decoder
] Semantic branch Affinity branch

ground* = {fields, farm ponds, other water}

References: SSAP


https://arxiv.org/abs/1909.01616

Agricultural Landscape Understanding (ALU)

Multiple postprocessing steps to
generate land-use maps from
ML predicted masks

e \/ectorization

e De-duplication
e Boundary refinement (e.g., dagger removal) ~|Pagger removal
e Feature identification

e Spatial Indexing and Data Partitioning e find a rectangular envelope of
e . . the dagger points
e |dentification and Exclusion of e use the length and width of the
Non-Agricultural Areas envelope to identify the

elongated dagger-like shape




Agricultural Landscape Understanding (ALU) B

Input: A Polygon with vertex sequence P = {py, p, .... pn}
Output: Polygon without daggers with vertices P’ € P
H : Convex Hull of P
Q=HUP; // Points in P which are on the hull
for each pair (gi,q;) € Q X Q do
if (gi,qj € P) and isDagger(q;,q;,P) then
| P « removeDagger(g;, g, P);

end
end
return P .
Algorithm 3: Dagger Removal
P1 > P5
This is dagger Pe
This is ignored P3 P4
P8 P7

Input: Polygon P, Points g, qj € P, Dagger Threshold d;,
Angle Threshold a;

Output: True, if (g;, ;) is base of a dagger; False, otherwise.

Find the midpoints m;, of the base edge (gi, q;)

for all pairs (qp, qx)|h # i # j # k do

Find midpoint m, of line segment (qy, qx)

Calculate vector V = m; — my,

// Consider vectors with angles which are not
too steep

if angle between V and base edge (qi, q;) < a: then

// Rotate Q; around M, using vector V

T; « Rotate(Qy, V, Mp)

// Calculate minimum rectangle envelope

R « MinimumRectangleEnvelope([T;..T;])

Cond1: abs(miny R) ~ abs(maxy R)

Elength = maxyR — min,R

Ewidth = maxyR — minyR

Criterion: Elength / (max(Ewidth, Base length)

if Cond1 and Criterion > d; then
| return True

end

end
end

return False
Algorithm 4: Algorithm isDagger: checks if the the set of

points considered, with g;, g; as base points, forms a dagger

—— Polygon

—— Base

--- Envelope
| :
" Base’
1 midpoint
|

- - ~ ~Envelope line of symmetry * -

Distance vector

Perpendicular

bisector
)

|
P \
- poine iﬂﬂ“i‘f‘///\
— P

- P Envelo
fe1 — — i
. —Base mdpoint — N
g _— length
E _— Envelop
Lmew

longated ©¢)




Area in '00 hectares

ALU: Large-Scale Evaluation Against Census

40000

30000

20000

10000

Area of Fields
® Agricultural Census Data 2015-16 ® Model Output

250000

200000

150000

100000

Area of Fields

Area in '00 hectares

50000

= Agricultural Census Data 2015-16 = Model output (excluding non-agricultural regions)
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States
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Mizoram
Manipur
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States

Nagaland
Meghalaya
Uttarakhand
Assam
Haryana
Jharkhand

Karnataka
Maharashtra
Uttar Pradesh
Madhya Pradesh
Rajasthan

Google DeepMind



» Option 1: Specify by a S2Cell

S2Cell: 4306523180387794944

Request S2cell ID

ID (level 13) directly.

ALU API Launched 2024 Q4
agri.withgoogle.com

Response: Landscape feature (red)

» Option 2: Specify by a coordinate point (latitude and longitude)

lat: 17.43077, Ing: 74.41152

Request Altitude and
longitude

S2Cell: 4306523180387794944

S2Cell ID of the request
coordinate

Response: Landscape

feature (red)

Feature Property

properties.alu_type

properties.area_sq_m

properties.class_confidence

properties.capture_timestamp_usec

Type

string

enum

float64

float64

unit64

Description

A feature ID, represented by the plus
code of the centroid of the feature.
https://plus.codes

Represents the type of feature.
List of enum values

o field

o farm_pond

» other_water

o dug_well

« trees

Represents the area of feature in
square meters.

Represents the confidence in the
accuracy of the classification.

Represents the capture timestamp in
microseconds for the observation’s
source image.


http://agri.withgoogle.com

Policy & ALU

ALU: a tool to study spatio-temporal trends at
high resolution across India

Spatio-temporal trends in ALU features can
potentially help in quantifying the effects of
policy changes (work in progress)

Policy Driven Growth In Water Infrastructure By
SmallHolder Farmers

Right: Increase in farm ponds seen across 2 comparable
states, before and after a policy reform incentivizing farm
ponds in one of them.

Farm Ponds

Farm Pond Statistics
B 2010-14 | 2020-22

200000

150000

100000

50000

Maharashtra Madhya Pradesh

Google DeepMind



Trees Along Farms (TAF)

Initial pan-India Metrics (per our model):

e Current Trees Cover: 57K sq km (~ Croatia)
e Potential Afforestation: 402K sq km (~ Germany)




Cadastral Mapping - Modernizing Land Records

A long time ago, in a galaxy far
away... there were paper maps

TS

ORI

They were scanned and vectorized
into GIS geometries (using ALU
boundaries)

In collaboration with IIT Bombay



Overlaying the digitized maps on modern satellite images found a persistent mismatch of over
50m: across 40k+ villages, over 300,000 sq. km in MH alone!

A scanned village map Overlaid on satellite post geo-referencing




ALU
Segmentation

Satellite images cannot be processed simply, but segmented farm plots are
substantially easier! An image processing problem becomes geometric and discrete.




A Mathematical Formulation

Farm plot

Inputs

Space partition S
(original map)

Ground reality layer
of farm polygons G

Minimize excess
area of S relative
to G

A4

Ensure area and
shape deviation is
below a certain
threshold

Output
A space partition S’ (modified map) with
transformed sets of nodes and edges

7
b - (P1-Q)
Q Ownership
polygon
P2

N\

(P2nQ)

Excess Area(Q) = % min{P-Q, PNQ}



LJ@ )
=
!

To precisely align our modified map with farm boundaries: to do this, we must first create a
Voronoi partition on the segmented satellite image to create a planar farm graph.

1
N

=

=)




Farm graph edges Map edges (original and shifted) Farm graph nodes

Map nodes Shifted map nodes

|

The ownership map is processed polygon-by-polygon, with each polygon’s available nodes being
latched onto the farm graph.




/‘\,_ Map edges that “hug” the

e farm boundary
-
®

Finally, the possession

boundary is created by

tracing farm edges: the
intended effect is to assign

L

o——9¢ each farm an owner!




Green:
under 4%
deviation

Red:
above 6%
deviation

A pilot village

. coloured by quality

Black: points
measured on
the field

Red:
proposed
map

Avg. error: 2.2m

o | Mmberctavey | %otemetuie | st sy e i
rating perimeter and deviation
matargaon 41 58.33 61.11
deolanakh 41 50.00 47.22
dagdagad 52 83.67 63.27
kharburdi 59 50.00 47.50
gopa 78 76.00 45.33

Results on pilot villages: over 45% of plots
consistently match all constraints!




Validating

Outputs: Field Validation

Field visits
Drafting field SOPs

The GCP Collection SOP
6th June, 2023

. A minimum of 8 ground control points (GCPs) should be collected per village; collecting
at least 10 to 15 GCPs per village is highly recommended. These should be correctly
labeled as per survey map and as discussed.
2. Atleast 2 GCPs should be collected in each the north, east, south, and west sections of
the village map.
3. 2 GCPs to be collected along each road in the village, as demarcated in the survey map
if they are available.
4. GCPs to be collected along or near each stream, as demarcated in the survey map if
they are available.
5. Atleast 1 GCP must be collected along the Gaothan boundary, as demarcated in the
survey map. Village tri-junction GCPs must be collected.
In general, the quality of the GCPs and their correct labeling are important for the quality of the
output.
6. Each GCP should either be a tri-junction or a quad-junction; in that, the GCP must
border at least 3 survey plots/roads/streams.

e __Tho followinachothande st hoysodwhile Jaholing GRS




Our Solutions

Agricultural Landscape Understanding [ALU]

1. Panoptic Segmentation
High Res Sat Images — Fields, wells, ponds, trees...

API Launched

2. Superresolution for Segmentation
Low Res Sat + High Res Sat Reference — Field boundaries

New latent diffusion based model

Agricultural Monitoring and Event Detection [AMED]

3. Crop Type Classification
ALU + Low Res Sat — Crop Type

API to be launched soon

4. Satellite Super Cross Fusion
Low Res Sat + Street View (during training) — features
for classification & other tasks

Model development ongoing

Data challenges .........

........ Algorithmic challenges >




Global expansion & In-season freshness
HighRes imagery refresh rate does not match rate required to provide
in-season model outputs.

Public high temporal resolution (weekly) Sentinel-2 data to get near real
time field boundaries at with submeter level accuracy.

In India's smallholder farming systems, field boundaries are highly dynamic,
changing seasonally.

SUPER RESOLUTION

Time Series of Sentinel-2 (10M) Imagery

.

{ Proposed Framework J

l.




Super Resolution for Segmentation

(1) a sequence of multi-temporal, multi-spectral, multi-source LR images
(2) an older VHR Reference Image

Segmentation mask delineating field boundaries at VHR .
Segmentation mask

delineating
field boundarie$ at VHR

TIME

10m

=2 I I 0 1 N
Weekly

30cm

Satellite

Annual

(1) a sequence of multi-temporal,
multi-spectral, multi-source LR images

(2) an older VHR Reference Image GO gle DeepMind



Super Resolution for Segmentation

Problem

Inputs:

(1) a sequence of multi-temporal, multi-spectral, multi-source LR images
(2) an older VHR Reference Image

Desired Output:
Segmentation mask delineating field boundaries at VHR

Why do current methods fail?

Previous approaches mainly follow the paradigm of
- Super-resolution in the pixel space, followed by
- Segmentation on the super-resolved image

Limitations:

- Low scale factor (< 16x) super-resolution
- Inadequate to reveal crucial features for field boundaries

LR images at 10m GSD

Conventional
Superresolution
Models

Reference VHR
image

Superresolved VHR image at
0.5m GSD

Segmentation
Model

Segmentation output at
0.5m GSD

Google DeepMind



SEED-SR: Segmentation Embedding Enhancement via Diffusion - for Super Resolution

Why do current methods fail?

Previous approaches mainly follow the paradigm of
Problem - Super-resolution in the pixel space, followed by

- Segmentation on the super-resolved image
Inputs:

(1) a sequence of multi-temporal, multi-spectral, multi-source LR images
(2) an older VHR Reference Image

Limitations:
- Low scale factor (< 16x) super-resolution
- Inadequate to reveal crucial features for field boundaries

Desired Output:
Segmentation mask delineating field boundaries at VHR

LR images at 10m GSD

‘ R EIL) Segmentation
Superresolution
. : Model Model
Reference VHR Superresolved VHR image at Segmentation output at
Our Contributions image 0.5m GSD 0.5m GSD
e We develop a task-specific, super-resolution method to ERImates At 1Om:93D. No prediction of
generate VHR segmentation maps (at 50cm GSD), at 20x A S ™ SUPT':ZZ:’V“
super-resolution.
P ‘ -
Our Framework
e SEED-SR showcases a unique way to leverage multiple Reference VHR b
Segmentation output at

pre-trained large-scale geo-spatial foundation models with e 0.5m GSD

latent diffusion models.

Google DeepMind
Submitted to NeurlPS 2025



SEED-SR: Segmentation Embedding Enhancement via Diffusion - for Super Resolution

LR images from %%
multiple sources HR)I(T/age . . .
X; ; We leverage two geospatial Foundation Models:
1. LR GeoFM
o embeddings from LR images
2. HR GeoFM

LR o Embeddings from HR images
Sl Encoder o Pre-trained to generate segmentation maps
i | Key Idea: “Super-resolve” in seg-aware latent space
LRembedding iRt emmbeading Train a Diffusion Model to predict HR embedding from LR
embedding and Reference image embedding

- >_> _, Forward
; Diffusion ‘ T Il 6 6
Target HR emb at i ‘Tlmestep

‘ ‘ _Encoder 6
Ligs Noised HR emb attime t Y

t ‘ 'Denoising Diffusion -

i LR emb. spfnning n | Mo‘del 1
| weeks |
! e Predicted HR emb. at |
3 i J time t and timestep 1 |

eh,T f

Noised HR emb at time t' | .
. Google DeepMind
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SEED-SR: Segmentation Embedding Enhancement via Diffusion - for Super Resolution

Model
Encoder
.
High Resolution
Foundation

Multispectral, LR HR Image
Multi-source LR images embedding Xhyr
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Low Resolution
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embedding
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QKV

Self Attention Block
Conv Block

Encoder Block 1
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Encoder Block 3
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Encoder Block 4
KV .
| ;— % Cross Attention Block

r”_-__' Forward
i Diffusion f ‘
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Spatial Feature Transform 1 g
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DeCOdEI" Block 3

.
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Spatial Feature Transform 2

Decoder Block 4 =
Cross Attention Block %
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HR FM embeddings are very
high-dimensional (120,120,3840) which
makes diffusion challenging

Our architectural innovations in the
UNet within DDPM allow the dlffusion
process to yield information-rich
embeddings
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SEED-SR: Segmentation Embedding Enhancement via Diffusion - for Super Resolution

Sample from Gaussian

Distribution
I ‘ €h,t ~N(O,))

LR emb. spanning
t-t' duration
€

HR emb. at time t'
€r

Estimate
€h,t-1

Repeat T times
T~[7

Denoising Diffusion
Model

A

€h,0

Inference

% @ o

Semantic Segmentation
Outputs at 0.5 m GSD
obtained from 4
seperate evaluation runs.

%% i Watershed “

_j\

Instance Segmentation
Output at 0.5 m GSD
from mean of semantic
segmentation outputs
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Instance Segmentation loU
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Previous 2-step SR+Seg approaches

References: LGCNet FunSR ,RefDiff
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Mask
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https://ieeexplore.ieee.org/document/7937881
https://chenkeyan.top/FunSR/
https://arxiv.org/abs/2403.17460

SEED-SR: Segmentation Embedding Enhancement via Diffusion - for Super Resolution

Going forward....
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[ 3
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KV H]

HR Image
X £

Conv Block

e Improve running time of computationally intensive inference

Decoder Block1 <

o Around 40s for 1 km”2
Target R emb.at imesig) Decoder Block 2
i eno | Encoder | 6 Decoder Block 3 =

'

e Integrate with ALU to utilize high-revisit-frequency satellite images Lo B rI ,,,,,,, L Denoisingmﬁusion’
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i edke Model : Decoder Block 4
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e Lays the foundation for a combined ALU + AMED model
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Our Solutions

Agricultural Landscape Understanding [ALU]

1. Panoptic Segmentation
High Res Sat Images — Fields, wells, ponds, trees...

API Launched

2. Superresolution for Seamentation
Low Res Sat + High Res Sat Reference — Field boundaries

New latent diffusion based model

Agricultural Monitoring and Event Detection [AMED]

3. Crop Type Classification
ALU + Low Res Sat — Crop Type

API to be launched soon

4. Satellite Super Cross Fusion
Low Res Sat + Street View (during training) — features
for classification & other tasks

Model development ongoing

Data challenges .........

........ Algorithmic challenges >




Agricultural Monitoring & Event Detection (AMED)
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AMED: In-Season Crop Classification

Problem

Identify the crop type within a field for an active crop season

In-season: as it is growing 14000
12000
% 10000
E 8000
g 6000
= 4000
Challenges
0
.. e < o™ e & @ & & S o o &F° e®
e |nsufficient labelled datasets SR o o

o Limited set of crops
o Not suitable for smallholder farms

e Large number of crop types with long tailed distribution
o 12 crops - 95% of the data 2 2

o Remaining 63 crops - 5% 2 7 ?
‘* W‘* ?W Google DeepMind



Crop Classification

Key contributions:

e Geographic generalization:
o Models work off-the-shelf on unseen regions

e In-season crop identification:
o  Crop identification 2 months into season (vs post-season)

e Large scale verification:
o Predictions evaluated using average at state-level scale



AMED: In-Season Crop Classification

e Labelled data from Annotators
e Combined with
o Satellite images (Sentinel 1, 2)
o ALU outputs

~70K samples — 32K after filtering

Join ALU Join RSD

=l
v
x &
>
GT Samples
- \
Labeled Fields

Training Data Generation

354

304

254

Season Detection Augmentation +
Standardization

Latitude

204

154

N ‘

. 104
® o Labeled Crop Training

DO Season + RSD Data

Label + RSD

Longitude
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AMED: In-Season Crop Classification

ENCODING
Pre-Fusion Post-Fusion
Encoders Encoders

m%m e
Mﬁm%

Embedding

Decoders

Classification
MLP

%mﬂ%

Alw/

Sat1
Reconstruction

Alw

SatM
Reconstruction

)gx

Classification
Label Output

Multi-class Classification Task

Transformer based
encoder-decoder architecture

Pretraining-Fine tuning approach
Masked autoencoder pretraining

Fine tuned for classification
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AMED: In-Season Crop Classification

Results

Macro Avg Precision

Macro Avg Precision 1.0
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Days After Estimated Season Start

e Performance improves rapidly for first 2-3 months into the season.
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AMED: Large-Scale Evaluation Against Census 2023-24
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Ag Landscape Monitoring & Event Detection

Map  Satellite & Go back to full map view

Current Capabilities

Overview

Corfidencatiign

¥ Wheat # 0.81Hectare

Current crop type Field Size
@ Field ID: 7JQW965F+RW64 = Last Sowing: 2022-12-22
¥ Most grown crop: Wheat &4 Last Harvest: 2023-03-27
Future Capabilities
Overview
@ Distance to water : xx km @ Distance to road : xx km
@ Distance to Mandi : xx km Q Distance to cold storage : xx km
Agriculture practices Last3years V¥
Legend
2020
2021
2022

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

e Crop 0 Tillage @ ronest @ Fiooding




ALU and AMED

Financial assistance — Conditional financial assistance
Condition = Cropping / crop type

Timely information for data driven evidence based
decision making for effective allocation of resources

Appllcatlons
Ag Input (Fertilizer allocation)
- Financial (Loans, insurance, aid)

- Farm Equipment allocation
- Advisory




Our Solutions

Agricultural Landscape Understanding [ALU]

1. Panoptic Segmentation
High Res Sat Images — Fields, wells, ponds, trees...

API Launched

2. Superresolution for Seamentation
Low Res Sat + High Res Sat Reference — Field boundaries

New latent diffusion based model

Agricultural Monitoring and Event Detection [AMED]

3. Crop Type Classification
ALU + Low Res Sat — Crop Type

API to be launched soon

4. Satellite Super Cross Fusion
Low Res Sat + Street View (during training) — features
for classification & other tasks

Model development ongoing

Data challenges .........

........ Algorithmic challenges >




Street View
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Map

satellite

& Gobackto fullmap view

Current Capabilities.

Overview
¥ Wheat 2 0.81Hectare
s -
¥ @
Future Capabilities
Overview
e e
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